
 Defining Surrogates for Industrial Use -
 The JuliaSim Surrogate Approach
 Many people approach building surrogate models for industrial simulation as a problem

 of machine learning architectures. The surrogates problem is to generate a

 machine-learned model that approximates a physical model to a high degree of accuracy

 but runs orders of magnitudes faster than the original model. In this approach, the focus

 tends to be on the construction of new neural networks, like physics-informed neural

 networks (PINNs) 1 , DeepONets 2 , Continuous-Time Echo State Networks (CTESNs) 3 ,

 Fourier Neural Networks (FNO) 4 , and more, which, when given sufficient data from a

 simulation, can reproduce their behavior. This does not address the underlying problem

 of integrating next-generation machine learning into industrial modeling and simulation

 workflows or the real problem of integrating surrogates into industrial processes and

 requirements infrastructure.

 How do Surrogates Fit into Industrial Processes and Requirements

 Infrastructure?

 These are the processes that are in place to make sure that an airplane that is designed

 by a controls engineer will stay in the air, ensure that drugs that enter the market are

 4 Li, Zongyi, et al. "Fourier neural operator for parametric partial differential equations." arXiv preprint arXiv:2010.08895
 (2020).

 3 Anantharaman, Ranjan, et al. "Accelerating simulation of stiff nonlinear systems using continuous-time echo state
 networks." arXiv preprint arXiv:2010.04004 (2020).

 2 Lu, Lu, et al. "Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators."
 Nature machine intelligence 3.3 (2021): 218-229.

 1 Raissi, Maziar, Paris Perdikaris, and George E. Karniadakis. "Physics-informed neural networks: A deep learning framework
 for solving forward and inverse problems involving nonlinear partial differential equations." Journal of Computational physics
 378 (2019): 686-707.

 1

 safe, and make sure that the products being developed take into account the realities of

 supply chains to be built in robust but reproducible ways. As scientific and engineering

 industries have entered the digital age, these processes have been refined so that

 mathematical and computational contributions can enhance the full pipeline, from

 research and deployment all the way to the late stages of fleet management.

 For the next generation of machine learning technologies to succeed in advanced

 engineering industries, they must be adapted to these processes and operate within the

 required infrastructure. At a high level, what are the requirements that are imposed

 through these systems?

 2

 Deployable Surrogate Systems Must Have Predictable Accuracy

 Giving a neural network more data to learn from should improve its ability to make

 better predictions. However, this can be highly dependent on whether the right

 hyperparameters are chosen. As the optimization process falls into a different local

 minima, it may not have improved even with the enlarged dataset. Maybe a larger neural

 network is necessary but it's not always clear when increasing the size of the neural

 network will actually improve predictions.

 Industrial use of machine learning needs to ensure that projects do not introduce a new

 vector that may seemingly randomly regress. Simulations of fluid flow through an

 airplane engine will be checked by engineers to reach a required prediction precision. If

 the system needs to be more accurate due to downstream requirements changes, the

 engineers know how to reliably increase this precision at the cost of compute power. The

 processes and requirements of simulation thus act first and foremost as a pull on

 precision. "We need this accurate to 1% on the landing forces", and with that, modeling

 and simulation are performed to give computational tools that reach the precision

 required by downstream teams for a successful handoff.

 It's not a given that the best neural network architecture in test scenarios is also

 guaranteed to be reliably able to meet accuracy requirements. While machine learning is

 adequate for generative AI since the model does not need to change until the language

 changes (a slow process), surrogate models need to be retrained every time the

 specifications or questions change. Engineers need a machine learning process that

 guarantees desired accuracy and gives a speedup while hitting all requirements. Thus,

 what's important is not the neural architecture but a process that can reliably generate

 accurate neural approximations.

 3

 A machine learning process that can guarantee always having a model of desired

 accuracy and provide a speed up while hitting all of the requirements is what helps

 engineers. Thus, what's important in the industrial context is not the neural architecture

 but having a process that can reliably generate accurate neural approximations.

 Deployable Surrogate Systems Require Clear Verification and Validation
 Standards

 The right understanding of the surrogates problem asks: "What are the processes so

 that, if we need 1% accuracy of a safety critical prediction over the whole space, we can

 derisk our analyses as much as possible?". This question is tractable. It's a question that

 leads to concrete questions like:

 ● What kinds of plots and visualizations would best help us understand where the
 surrogate is most accurate and inaccurate?

 ● If the accuracy of a specific area of the parameter space needs to be improved,
 how can a retrain be enforced so as to improve accuracy without sacrificing its
 accuracy elsewhere?

 ● How can the algorithm indicate what additional data is required or what hyper
 parameters should be adjusted?

 ● What are the right metrics and numbers that should be tracked so that, if
 sufficiently large, should be treated as a warning that the surrogates may not be a
 reliable resource for a given parameter range or scenario?

 ● How can this whole process be simplified so that new employees with domain
 expertise and no machine learning experience can easily "do it right" with the
 right safeguards to ensure inaccurate models are not accidentally deployed?

 These are the real questions that need to be addressed in order for an engineering team

 to safely develop internal processes and deploy neural surrogates throughout their firm.

 4

 Any Deployable Surrogate System Must Focus on Reliable Prediction Time

 A common question about surrogates is whether the time saved compensates for the

 time spent training them. In other words, did the use of the surrogate decrease the

 overall compute over not using the surrogate? If you had to run the expensive simulation

 model 1,000 times in order to build an accurate surrogate model which was used in a

 downstream analysis, say in a parameter estimation loop that requires solving the model

 5,000 times, did the surrogate architecture "pay for itself" or would it have been faster to

 simply run the original analysis on the slow model?

 Looking at industry applications of surrogates reveals that this question is a red herring

 as to the utility of a surrogate in applications for a number of reasons.

 Many applications of surrogates are enabling analysis that would be impossible without

 the surrogate's inference speed improvements. For example, in the control of power

 grids, there is a strict requirement that a model's evaluation be able to be run at X Hz in

 order to be deployed in the control scenario. This compute cost bound is thus the

 fundamental limiting factor of whether a model can be used in this context, and for this

 reason, often crude approximate models are used, which can lead to inefficient control

 strategies. Many billions of dollars can be gained by having a more accurate model.

 Accurate (partial differential equation) models exist which are much higher fidelity but

 are too slow to be run in this real-time scenario.

 The critical factor here is not the time it takes to train the surrogate (whether a week or

 six months), but whether it can reliably provide the required accuracy within the

 specified time frame. This focus on meeting requirements takes precedence over

 architectural considerations aimed at saving training time.

 5

 The data generation process is not necessarily a serial process. In fact, in many cases, the

 data generation is simply independent runs of a simulator at new parameters, a process

 that is embarrassingly parallel. This means that in theory, the time it takes to run the

 model with 5,000 different parameters is simply the true time cost of running the model

 once with its most expensive configuration of the set.

 With the advent of cloud, parallelism has no additional cost. As a result, the impact of

 data quantity on building surrogates is minimal. Instead, it becomes a question of value:

 is the value of the surrogate greater than the cost of its training? This question of value is

 again a question of how it's integrated into processes: how many engineers is this

 improving the workflows and productivity of? Given that we are talking about highly

 skilled engineers in high-tech industries, the effect of productivity increases can be a

 force multiplier when spread over a whole team or department. What matters most is

 that the engineers can rely on the surrogate to always work as expected and, as such,

 not give them the extra work of triple-checking its accuracy every time it's used.

 Surrogates could be a productivity boost as large as the original push to digitization if

 done correctly, or they can be a sideshow that puts entire teams on a wild goose chase if

 not.

 The true value cannot be unlocked without addressing the core aspect of having

 surrogate training processes and requirements that focus on how to use the surrogate

 techniques of the day in order to unlock as much productivity out of engineers as

 possible.

 6

 Digital Echo: A Neural Surrogate Built Around Industrial Processes

 Digital Echo - Generating Surrogates for Tuning Controllers using an ODEProblem Source

 The JuliaSim approach addresses the surrogate question from the standpoint of

 processes and requirements. The core questions above drive the development of our

 JuliaSim surrogate trainer product.

 Questions like:

 ● What are the neural architectures that will most reliably improve if trained on

 more data and are not hampered by issues associated with having too many

 hyperparameters to tune?

 ● How do we develop a visualization suite around the surrogate training processes

 so that scientists can be in the loop, easily understand the accuracy profile of the

 surrogate, and understand where or if the training must be improved?

 7

 ● Through what means can we present an architecture that is reliable and

 automatically masks training costs to maximize productivity via effective use of

 cloud infrastructure?

 ● How do we take all of this and make it usable and accessible to domain scientists

 and engineers with no machine learning background?

 These questions have driven us to develop our new architecture, Digital Echo. Its focus is

 not on the mathematical structures or the layer definitions; here we give absolutely no

 definition of the mathematics inside how it computes NN(x). It's not about the

 architecture; Digital Echo is about a process. A process for reliably creating the best

 surrogate it can, with processes to know when it needs to retrain, when it needs to warn

 you about accuracy, and processes for how to generate legible reports to document

 surrogate accuracy. Digital Echo is a completely different take on surrogates because it's

 about making sure someone can click a button and get a surrogate that meets the

 industrial requirements set out in their specifications sheet. Digital Echo is not about

 performance but productivity.

 8

