
Why Julia?

Julia is a fast and expressive programming language, delivering the speed of C++
and Fortran together with the productivity of Python, MATLAB, and R. This
fundamentally empowers diverse teams to work together to develop and deploy
performant programs at scale by solving the two language problem.

With that strong combination, switching to Julia might seem like a no-brainer, but
there may be some users for whom the speed and productivity gains do not
justify making the switch.

What Is the Purpose of this White Paper and Who Is It For?

The purpose of this white paper is to explain some of the benefits of Julia and describe who
might — and who might not — realize significant gains from switching to Julia.

The audience for this white paper includes:

● Engineers, researchers, scientists, programmers and managers

● Julia users and hobbyists who are looking to expand their use of Julia in production

● Julia champions who are looking to expand the use of Julia within their organization

● Decision-makers who are responsible for improving operations, efficiency, innovation and

product delivery

● Users of Python, R, MATLAB and other high-level languages who would benefit from

increased performance

● Users of C++, Java, Fortran and other low-level languages who would benefit from using a

more expressive high-level language for fewer lines of code without sacrificing speed

https://scientificcoder.com/how-to-solve-the-two-language-problem

● Anyone who would benefit from faster time to market with improved communication

across teams and a shared expressive codebase

Benefits

Julia delivers:

High performance with efficient native compilation, multi-threading, and distributed and GPU
compute

● High productivity with the semantics and expressiveness of a dynamic language like

Python, R, Stata and MATLAB while avoiding the traditional overheads (up to 100x faster)

● Ease of use with straightforward semantics that are easy to learn, easy to write, and easy

to analyze and understand

● Composability with packages that are built to work together and with the code that you

write by default

● Interoperability with Python, R, C, C++, Java, and other languages through tooling that

enables 2-way integration of codebases

● A single language that can span prototyping and deployment,reducing errors and solving

the two-language problem

● A robust open-source package ecosystem, including more than 10,000 registered

open-source packages

● A rich community of users and contributors - Julia has been downloaded more than 50

million times, has 440,000 cumulative GitHub stars (including Julia + Julia packages), and

has more than 10,000 contributors to registered packages

As a result, Julia is the leading language for scientific machine learning, simulation, modeling, and

much more.

Users include:

Pharmaceuticals AstraZeneca, Merck, Pfizer, Sanofi, United Therapeutics

Technology Amazon, Apple, Cisco, Facebook, Google, Intel, NVIDIA, Uber

Finance & Economics Aviva, BlackRock, Conning, Federal Reserve Bank of New York,
State Street

Space NASA, Brazil National Institute for Space Research (INPE), US
National Energy Research Scientific Computing Center (NERSC)

Sport Williams F1 Racing

Energy AOT Energy, EDF, LAMPS PUC-RIO, Los Alamos, Mitsubishi Electric
Research Laboratories

Industrial Simulation Instron Auto Crash Simulation

Aviation Boeing, FAA, Lincoln Labs, Zipline

Robotics MIT Robot Locomotion Group, UC Berkeley Autonomous Race Car

How do these organizations use Julia?

● Instron uses Julia to improve their automobile crash simulators, including a 500x speedup

that reduced runtime from months to hours.

● Sanofi uses Julia to treat more cancerous tumor cells faster, optimize dosage and timing,

and simulate combination therapies.

● NASA uses Julia to model spacecraft operations.

● The Federal Reserve Bank of New York uses Julia to model the macroeconomy 10-11x

faster, provide better estimates faster, and with 50% fewer lines of code.

● State Street uses Julia to improve the efficiency of foreign exchange trading.

https://juliahub.com/case-studies/astra-zeneca/
https://juliahub.com/case-studies/pfizer/
https://www.youtube.com/watch?v=U4dUkbj_ibg
https://juliahub.com/case-studies/united-therapeutics/
https://juliahub.com/case-studies/cisco/
https://community.intel.com/t5/Blogs/Products-and-Solutions/Software/Accelerating-Scientific-Computing-with-Julia-and-oneAPI/post/1467988
https://community.intel.com/t5/Blogs/Products-and-Solutions/Software/Accelerating-Scientific-Computing-with-Julia-and-oneAPI/post/1467988
https://juliahub.com/case-studies/aviva/
https://juliahub.com/case-studies/blackrock/
https://juliahub.com/case-studies/conning/
https://juliahub.com/case-studies/ny-fed/
https://juliahub.com/case-studies/bestx2/
https://www.youtube.com/watch?v=tQpqsmwlfY0
https://juliahub.com/case-studies/BrazilNationalinstituteforspaceResearch/
https://juliahub.com/case-studies/celeste/
https://juliahub.com/case-studies/celeste/
https://juliahub.com/case-studies/williams-racing-unlocks/
https://juliahub.com/case-studies/aot/
https://juliahub.com/case-studies/edf/
https://juliahub.com/case-studies/lamps-puc/
https://juliahub.com/case-studies/lanl/
https://juliahub.com/case-studies/auto-crash-simulation/
https://juliahub.com/case-studies/lincoln-labs/
https://juliahub.com/case-studies/lincoln-labs/
https://juliahub.com/case-studies/zipline/
https://juliahub.com/case-studies/mit-robotics/
https://juliahub.com/case-studies/barc/
https://juliahub.com/case-studies/auto-crash-simulation/
https://www.youtube.com/watch?v=U4dUkbj_ibg
https://www.youtube.com/watch?v=tQpqsmwlfY0
https://juliahub.com/case-studies/ny-fed/
https://juliahub.com/case-studies/bestx2/

What Is the Two Language Problem, and How Does Julia Help Solve It?

Historically, programming languages have fallen into two categories:

Examples Advantages Disadvantages

Fast, low-level
languages

C, C++, Java, Fortran Fast in production Complex functions
need to be written
out in long form

High-level, slow
languages

Python, R, MATLAB Easy to write, easy to
read

Slow in production,
often requiring
re-writes to another
language

Researchers often use high-level languages like Python, R, or MATLAB for research and

prototyping because it is relatively quick and easy to try different model specifications using a

relatively small dataset.

But when the results need to be implemented at massive scale, with large quantities of data, and

speed is of the essence, the resulting algorithms need to be rewritten in a fast low-level language

such as C, C++, Java, or Fortran.

The costs of this two-language approach include:

● Cost of translating the algorithm from high-level language to low-level language, including

the cost of testing, bug detection, etc.

● Additional bugs introduced during translation

● Communication challenges between researchers using one language and programmers

using a different language

● Need to use two languages and often two teams for each update or modification

In the past, engineers, computer scientists and developers believed that a language had to be

one type or the other: high productivity (and slow in production), or fast in production (and slow

for research and prototyping).

The creators of Julia challenged this belief when they released Julia to the world on February 14,

2012.

They introduced Julia, a new language that delivered all of the benefits of a fast production

language + all of the benefits of a high-productivity research language:

● Eliminates the two-language problem

● Allows researchers, scientists, developers, programmers, and engineers to use a single

language

● Improves communication and reduces misunderstandings and miscommunications

● Reduces bugs and eliminates an important source of errors

● Results that work in a laboratory setting also work in production

● No need for translation

● Saves time - no code translation

● Eliminates several steps

● Speeds time to market

● Reduces need to maintain infrastructure for multiple languages

Switching to Julia

For users with a lot of legacy code, switching to Julia can require a significant investment of time

and energy to realize all the benefits of Julia’s speed.

Fortunately, there is a robust ecosystem of packages that allow 2-way interoperability between

Julia and C, C++, Python, R, Java, and other languages.

https://julialang.org/blog/2012/02/why-we-created-julia/
https://julialang.org/blog/2012/02/why-we-created-julia/

This means that the whole organization doesn’t have to be trained on and converted to Julia all

at once - significant benefits can be obtained by starting a single pilot project or a small handful

of projects in Julia, or converting one or more programs or functions into Julia.

As Julia proves itself within the organization, users will identify opportunities to expand Julia

usage, prioritizing areas that would benefit most from the increased speed and improved

functionality that Julia offers.

Who Benefits Most from Switching to Julia?

Users who would benefit the most from switching to Julia have one or more of the following

characteristics:

● Currently experiencing bottlenecks using Python, R, or other low-speed languages.

● Massive or rapidly expanding data volumes.

● Interest in new languages and processes.

● Currently using both a slow language (such as Python, R, or MATLAB) for prototyping and

a fast language (such as C, C++, Java, or Fortran) for production - and would benefit from

consolidating to just one language.

● Facing communication and implementation challenges because researchers (modeling

and prototyping) and engineers (production) are using different programming languages.

● Would benefit from shorter development time and faster time to market.

Users who would NOT benefit from switching to Julia have the following characteristics:

● Their legacy code is working and performing fine. Many high-level languages have

standardized workflows using libraries that are themselves written in an efficient

language; use-cases that are well-covered by a performant library that someone else has

written are unlikely to have dramatic speed improvements.

● They are satisfied with their current speed and time to market. No need to improve.

● They do not have massive or rapidly increasing data volumes.

● They have a lot of experienced programmers in Python, C++, or other languages who do

not want to learn a new language.

● They are not experiencing the ‘two language problem’ or communication challenges

between researchers (prototyping, modeling, simulation) and engineers (production).

Contact JuliaHub
If your organization would benefit from faster speed, simpler code, composability, and solving

the two-language problem, please contact sales@juliahub.com. We will work with you to identify

how and why Julia and JuliaHub might be right for you.

mailto:sales@juliahub.com

