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1. Industrial Engineering is Transitioning to a Software-Defined 
Environment 
 
Computing is becoming more powerful and pervasive, and is reshaping every product, from 
toothbrushes to rockets. Every physical object has a digital equivalent - a twin, used as a testing 
ground for new designs,rapid deployment, and new experiences. Every car, airplane, turbine, 
power plant, data center, and more, is being investigated – all the way down to the ball bearings 
– in order to improve efficiency and reliability. 

 

We are entering the world of Software Defined Machines - where software is used to design 
every piece of hardware, runs on the hardware itself, and, once the hardware is deployed, 
functions as its digital twin, learning from real-world feedback. Software Defined Machines use 
models as the single source of truth across the product lifecycle. Software Defined Machines will 
make engineering design as fast as software development. 

 

New features are being added to automobiles through over-the-air software updates, while 
sensors cover every airplane to continuously recalibrate predictive maintenance programs. 
Products can achieve higher satisfaction and greater consumer lifetimes while reducing the cost 
of materials and solutions, simply by adjusting software to the changing environment. For 
example, the Rivian driver experience was greatly upgraded recently, not through a recall, but 
instead by a software update to the controllers in the suspension [3], which used data gathered 
from sensors to refine the parameters that were previously calibrated using lab data. One can 
imagine pushing this world even further, where models are re-trained based on the data for each 
specific vehicle in order to automatically improve the experience, based on that vehicle’s wear 
and tear, the inclinations of a specific driver, and the typical road conditions its driver faces. This 
revolution, which is digitalizing the physical world into software-defined machines, has a major 
potential for savings in manufacturing costs – all while achieving higher quality products, 
especially when considering advances in AI and machine learning that enable integration of data 
into digital twins. With the right software, even cheap materials can give a more luxurious 
experience if they automatically tune and adapt to the environment. 
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Schematic of software defined machines. Software defined machines are the merger of embedded software with digital twins. At their 
core are machine models, which are system level models of the physical interactions, the electrical systems, and the control systems 
involved in the real-world device. The software defined machine extends the model using the data about the system to refine the 
model to higher fidelity: the precision of the model begins to capture features only seen outside the lab such as defects in the 
manufacturing process and the wear-and-tear of individual vehicles. The controllers on the vehicle, due to being software-defined via 
embedded software, can then be semi-automously updated based on the refined physical knowledge of the system, effectively 
molding the hardware to the improved physical understanding learned through the AI. 
 

A true marriage between the learnable behaviors and the constraints of modern engineering 
needs copious amounts of care and attention to detail in order to not derail the progress that 
has been made over the last century. In particular, standard engineering practices are heavily 
focused around aspects such as robustness, safety, and validation. Engineers are excited about 
the promise of AI tools, but also concerned about the pitfalls. For example, is replacing a 
hand-tuned, safe, and inspected automatic braking system with an AI-powered image sensor, 
even though it includes new sensor modalities which may improve autonomous operation? Given 
these sorts of challenges, the major question that must be posed to the field is: what is the right 
way for AI and SciML advancements to be integrated into the engineering models and workflows 
in order to best accentuate the advantages while mitigating the risks? 

 

To address this challenge and transform the field, we must accept that industrial engineers are 
extremely conservative. And this is rightfully so, as the safety and well-being of millions of people 
can hinge on their decisions. However, we must also understand that advancements in AI have 
provided an opportunity for new tools to leapfrog old workflows. AI tools will provide Copilots for 
Engineers helping them build product twins quickly, accelerate running times with surrogates, 
use Scientific AI techniques to collect data from the field and refine models and autocomplete 
missing physics, translate models from legacy systems to new representations, and make natural 
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language a first class part of the design and deployment experience. Software Defined Machines 
will lead to disruption in the $30B Modeling and Simulation industry [18] and the $73B Digital 
Twin opportunity [17]. Software Defined Machines are the merger of AI with modern engineering 
software, done correctly and safely. 
 

2. Issues with Current Engineering Software 
 
2.1 Legacy engineering tools do not facilitate modern agile workflows 

Modern engineering practice is dominated by workflows that revolve around physical modeling 
and designing control systems. Some tools, like computational fluid dynamics (CFD) tools and 
detailed 3D spatial digital twins of elements such as battery cells, are meticulously developed 
around specific physical processes and focus the engineer on key physical processes which can 
be understood and better exploited for efficiency gains. While these tools occupy a crucial space 
in the engineer’s toolkit, the expense (both human and computational) of isolating a component 
to achieve such high fidelity is too high to build a complete picture of the entire system. When 
trying to understand the system-level dynamics, how different optimized components will 
integrate and understanding for example the predicted performance of an entire vehicle in 
tandem, engineers resort to system-level simulation tools where the models strike a balance 
between simplified physics but high enough fidelity to make constructive decisions about 
complete systems. 

 

What this means is that the domain of systems level modeling is heavily dependent on the 
engineer to sit down and make choices about the right way to build the model, what features 
need to be captured and what is not needed, and what elements of the physics to include while 
deciding which elements it is safe to assume is not important. This is a manual and iterative 
process that can take years. It is not an exaggeration to suggest that the majority of the time 
engineers use the modeling tool is spent trying to understand whether the model sufficiently 
matches the real world. 
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The Traditional V-diagram of modeling and simulation in product development.  Above the dashed red line are the system modeling 
tools and the role they play in system design in verification. Below the dashed line are the high-fidelity 3D digital twins such as CFD 
software. Systems modeling tools must integrate with such tools but ultimately must simplify to capture the complexity of the entire 
system, though today much of this integration is manual. 
 
To top it all off, the systems modeling tools which are in play have not fully kept up with the 
major changes to compiler technology which accelerated through the 2010’s. We have seen a 
boom in agile development platforms, continuous integration testing and deployment (CI/CD), 
and the adoption of Git-based version control greatly accelerate the pace of software, but these 
workflows are not integrated into the core of traditional engineering platforms. Additionally, 
major advancements in underlying tooling include the LLVM compiler for high-performance 
just-in-time compilation which can target many platforms, the explosion of new tooling around 
automatic differentiation (AD) and machine learning requires entirely new solvers and compilers 
in order to achieve full integration. This means that recent advancements in domains such as 
physics-informed machine learning (PIML) and scientific machine learning (SciML) have seen 
major growth as potentially new workflows for modelers to build better models faster, but there 
are some serious technical hurdles for fully retrofitting into the existing technologies. And 
similarly, the stumbles of Microsoft Office vs other tools such as Google Docs shows the difficulty 
of migrating traditionally desktop-based software into a fully-collaborative cloud-based 
environment where the source of truth is always shared and handled by multiple users 
simultaneously. This shows that the next generation of engineering software needs to start from 
an entirely new foundation. 
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2.2 The traditional divide between models at different scales does not generalize to digital 
twins 

Tools developed for system-level simulation have traditionally been separated from those of 
high-fidelity spatial 3D modeling. We tend to put the types of problems for which a systems 
modeling tools are used in a different bucket from those that would use tools like Computational 
Fluid Dynamics (CFD) or Computer-Aided Design (CAD). However, with the rising construction of 
digital twins, there is an increasing push to achieve higher and higher fidelity within the 
systems-level models in a way that is equivalent to embedding the high fidelity models within the 
systems model and its control circuits. This is compounded by the fact that traditional control 
systems were greatly limited by the capacity of embedded controllers, but with the ever 
increasing improvements in compute power and efficiency, modern controllers can often make 
use of ARM chips which are capable of running an entire smartphone. This means that even 
when targeting real-time embedded applications, higher fidelity model-based control or 
multi-frequency control where a lower-frequency higher-fidelity prediction is used is becoming 
more normalized. 

 
Schema of the modeling landscape with respect to software-defined machines. In the top left there are the high-fidelity modeling 
systems of single assets, such as computational fluid dynamics which models every detail of airflow over an airplane wing and EDA 
tools which are a full specification of chips. In the bottom right you have tools which model the entire system but to low fidelity. For 
example, SysML uses natural language requirements specifications of hardware systems, and model-based design (causal modeling 
tools for embedded control systems) adds mathematical descriptions of control systems. In the middle you have acausal modeling 
tools which blend some of the accuracy of the component modeling tools while achieving a higher level system description, but 
require making trade-offs on both fronts. This highlights the advantage of the Dyad digital twin approach, which uses SciML in order 
to elevate the realism of system level models to almost achieve that of the individual component modeling tools, while being able to 
represent the entire system and the artifacts for its software-defined embedded control systems. 
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However, the compiler infrastructure of the systems level modeling tools have not kept pace with 
these requirements. Existing tools are well known for limitations in both memory and compute 
as the size of the systems grow, but even systems known for efficiency can have scalability issues 
when dealing with thousands of states [9]. Connections with these model types are therefore 
black-boxed. This means that when integrating higher-fidelity sources of truth—such as CFD 
tools and other domain-specific digital twins—the system uses black-box formulations through 
protocols like the Functional Mock-up Interface (FMI). FMI embeds the complete simulation code 
as a discrete block within the modeling system. As such, these models use different solvers, time 
steppers, etc. which are disconnected from the rest of the model, and then stepped in a lock-step 
pattern known as cosimulation which leads to many artifacts in the numerical stability, 
performance, and accuracy [16]. The inability for the modeling compilers to fully optimize the 
simulators across boundaries thus limits the ability for this model combination to be fully 
scalable.  
 

2.3 General AI Tooling is not sufficiently trustworthy for Safety-Critical Engineering 

While some Silicon Valley AI startups would lead you to believe that machine learning will replace 
all other forms of computation in the next 5 years, the majority of mechanical, aerospace, and 
automotive engineers are rightfully skeptical that there will be a complete replacement in these 
domains anytime soon. One major reason for this is, as emphasized in the previous section, the 
process of understanding what is necessary in a model is an iterative process that is refined. It is 
not entirely captured in the computer: it’s a process of building a model, checking the real 
system, finding disconnects, making decisions about what is okay to be kept and not, 
understanding what new sensors could be helpful to further refine the model, and repeat.  

 

Instead, machine learned solutions are black-boxes that are hard to understand and modify. 
While one can receive new data to retrain them, due to phenomena such as local minima it can 
be hard (if not impossible) to have any guarantee whether new iterations of a model have gotten 
closer to this global idea of the true system which can be difficult to capture in data and loss 
functions. Standard machine learned models do not have a sense of physical truth, and thus we 
do not have a guarantee that their predictions match physical principles such as conservation of 
energy and momentum, meaning that predictions can drift away from reality over time and the 
boundary to which they are not trustworthy is ill-defined.  

 

With all these points together, it’s clear that the job of the modeler is very unlikely to be replaced 
wholesale by a purely machine learned process, especially in regulated domains for which these 
model building aspects are closely checked in order to achieve safety in consumer systems such 
as automotive and aerospace.  That said, the future can certainly have engineers in loop, taking 
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tools such as Large Language Models (LLMs) and AI chatbots to accelerate the usage of system 
modeling. However, such integration must be done with care because these tools are known to 
have difficulties with accuracies, known as hallucinations, and it’s well-known that just one small 
error in a model can make the predictions completely incorrect, and thus unlike an essay a model 
has almost zero tolerance for such errors. Therefore any integration needs to be carefully 
thought through in order to highlight the areas which the modeler should second guess for the 
inevitable debugging phase. In addition, systems modeling has very specific sources and is thus 
not likely to be part of the core corpus of training data in tools such as ChatGPT or Google’s 
Gemini: this domain requires specific API integrations to construct domain-specific  word 
embeddings for the foundation models to understand system modeling will be necessary to have 
any level of accuracy. As such, a successful solution likely would need to integrate agentic AI 
tooling, which would need deep integration into the system modeling tool and change some of 
the standard workflows. 
 

2.4 Scientific AI Has Not Transitioned to Industry 

While standard machine learning tooling does not look like a viable alternative to traditional 
systems-level modeling and simulation and has thus not made any inroads into the industry over 
the last two decades of major ML advances, a subdomain known as scientific machine learning 
(SciML) shows promise by overcoming many of the previously mentioned shortfalls. In particular, 
SciML mixes the principles of the mechanistic models with data-driven elements, allowing for 
models which can learn from data but can be designed to ensure crucial properties such as 
conservation laws are kept. The burgeoning field of SciML has demonstrated that in many 
promising applications this can greatly improve the accuracy and reliability of ML predictions in 
the context of physical systems. 

 

However, the growing space of SciML tooling has to this point been largely academic due to the 
early stage of the field. These tools assume deep familiarity with deep learning stacks like 
PyTorch, Jax, or Julia’s Flux.jl, assume the author is comfortable designing neural architectures, is 
capable of debugging failures in the ML training processes themselves, and is comfortable with 
the scaling and deployment of the ML to distributed GPUs for the full training problems. While 
this problem can be largely handwaived in computer science circles by assuming that future 
university training programs will integrate machine learning knowledge into every discipline, it’s 
unrealistic that every field integrates a complete ML engineering PhD core into every degree 
program. As such, there is a major barrier to the adoption of this tooling beyond the current 
academic research setting which requires both the simplification of the tooling and integration 
into workflows that engineers are already trained to understand. 
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In order to do this effectively, a systems modeling tool would need to integrate SciML directly into 
its core architecture. This means having all elements of the simulation system compatible with 
being a part of the training loops, which requires solving the compatibility with automatic 
differentiation that was previously alluded to as a major hurdle to retrofit into existing code 
bases. Additionally, most machine learning problems at the scale of realistic models cannot 
assume that the average user will have the right hardware for performing the training, as these 
can require multiple GPUs coupled together. Therefore the full system will require having deep 
integration with cloud-based compute resources and asynchronous workflows where jobs can be 
started and results can be analyzed. These issues are directly noted as in direct opposition to the 
workflows of the traditional systems modeling tools designed around the desktop workflow. 

 
Example of how SciML (PEDS+AL) methods can perform on much smaller training data (two orders of magnitude reduction), 
compared to using a purely NN based approach. From “Physics-enhanced deep surrogates for partial differential equations” Pestoure 
et al. 
 
Finally, while the high-level goals of many of the SciML fields are largely aligned with this 
direction, many of the techniques are not designed to address the issues associated with 
industrial use. For example, while techniques like physics informed neural networks (PINN) and 
neural operators have the ability to merge physical information into predictive models trained 
with data, the exact mechanism by which these techniques are changing from the model’s 
predictions is kept within the black box of the neural networks, where this opaqueness of the 
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black box inhibits the engineer’s ability to iteratively refine the model. Thus while these 
demonstrated some promise in their predictive power in the academic scenario that you have all 
of the data you will ever need and only need to use the model for one prediction, this does not 
translate to the real-world where model details are reused and refocused to new applications 
over time. In addition, it should be noted that there are major independent studies about the 
applicability of these methods which call into question their ability to accurately converge on 
non-toy examples, and the training of these models can be orders of magnitude slower than the 
traditional solving techniques. 

 

Thus instead, the integration of SciML into system modeling tools requires a deep understanding 
of the domain in order to make use of the right types of methods, such as Universal Differential 
Equations [11], which can augment the modeling workflow, use less training data than purely 
data-driven methods [8], and move away from traditional neural architectures and training 
techniques with local minima behavior towards reservoir computing workflows which can 
guarantee reliable training and convergence to work the first time. With these kinds of changes 
and integration of hyperparameter tuning AutoML, the details of the ML processes can be 
masked from the user and directly integrated into workflows for engineers without an ML 
background. 
 

3. Unlocking new hardware design experiences 
 
3.1 Breaking the silos: Bringing engineers and developers onto a single source of truth 

A fundamental issue with the previous era of engineering software was the split between 
engineers and developers. Engineers who focused on the physics, developing accurate models, 
and tuning controllers have developed a major preference for the GUI-based workflows of 
systems modeling tools. On the other hand, the software developers in charge of the deployment 
of code onto the hardware live in a different world, using low-level programming languages like C 
and Rust to hand-code the engineer-optimized solutions onto the device. While there are some 
tools which seek to overcome this hurdle by providing the ability to generate embedded code 
from the GUI, ultimately there is a divide in workflows. Modern software engineering relies on 
CI/CD automation, exploring diffs in textual formats, and using version controlled workflows with 
structured review processes. GUIs enable the engineers to design what to go on the hardware, 
but they get in the way of deploying that design in an agile but reproducible manner. 
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Matthijs Cox writes about the Two Cultures Problem [4]. Scientists would love to write better code whereas developers would love to 
have a better understanding of the domain. These communities are separated largely by tools which encourage working in silos, and 
lead to two separate cultures. Bringing these two cultures together would lead to tremendous benefits for the organization, and a 
crucial component in doing so is to have a common set of tools for everyone. 
 
The future of engineering software must discard this dialectical divide by giving a single source of 
truth. The model files are simultaneously representable within graphical modeling environments 
and textual workflows. As such, the future modeling software must return all of software 
engineering tooling to the domain by naturally interfacing in the textual form without sacrificing 
the engineer’s ability to visualize the same source in a graphical way. This allows for the hand-off 
between silos to be seamless, eliminating translation steps, and ensures that a single software 
artifact can describe the entire process from conception to value creation. 

 
Software defined machines across the manufacturing process. By having a single system that connects design, deployment, and 
operation, allowing feedback and refinement, all aspects of a device’s lifecycle can be transformed and remove the transformation 
friction between what were previously separate teams. 
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3.2 Rapid Deployments for Over-The-Air-Updates 
 
As modern devices are becoming increasingly software integrated, one of the major features 
being touted is the ability to continually improve devices via over-the-air-updates. By simply 
shipping a car with a bit of extra computing power, your 2025 model vehicle can get the 
perception system of the 2027 vehicle simply by downloading the latest version of the autonomy 
software in a fully automated fashion. This gives improved value and longevity to the customer 
over traditional manufacturing which requires an entirely new device in order to receive any 
improvements. This has vastly changed the landscape of design, where instead of only changing 
a vehicle or airplane at well-defined longer scale time intervals, small improvements can be 
continually made, treating our manufactured devices closer to the fast iterating space we see in 
software services. 

 

However, the same monsters can rear their head in this space as real-world devices need to 
balance safety, reliability, and other such metrics as any mistakes in this process is not just a bug 
but a potential hazard that can lead to accidents and death. Because of this, a car manufacturer 
needs to be very careful with every update they push out: faster updates give a better experience 
to the user, but a bad update to an autonomous driving system could be fatal. 

 

In the future of engineering software, all of the evolving models of a team can live in a cloud 
environment, and thus any of the changing versions can be selected to construct and test 
deployments. Version control systems would allow the developers of models to maintain multiple 
versions and branches of their model and component libraries. They can for example keep a “no 
AI” version, “stable” version, and a “bleeding edge” version. The team running the deployment 
can then use the integrated dependency management in order to maintain a model of the full 
vehicle where they test in piecemeal the effect of change: updating the version of each 
component one at a time, bringing in the AI enhancements only as needed for the fidelity 
required in the final build. The deployment team could then in isolation test the complete build 
and A/B test the effectiveness of specific AI model enhancements and report back their findings 
to the modeling engineers responsible for the given component. This gives a fast acceptance and 
rejection mechanism for the validation of incorporating any AI elements, with the ability to fully 
log all of the choices for easier auditing. 
 

3.3 Living Digital Twins: Scientific AI as an Evolving Model 

Current engineering workflows are designed around an understanding of an engineer at the 
computer driving the model development. However, the SciML techniques can integrate with the 
growing streams of real-world sensor data in order to continually evolve the model 
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autonomously. Because of this, new engineering software designs could use the cloud based 
approach at its core, so that the life of the model continues beyond the point where the modeler 
closes their laptop. The ideal scenario can be imagined as a world where the model 
autocompletion is run autonomously in the background as data streams in, and when the 
engineer comes back from lunch, they open their laptop to find that their model of the car's 
suspension is likely missing a crucial friction term required for the performance loss and thermal 
output being higher than expected. The engineer can validate this SciML predicted model 
augmentation by gathering new data in the lab and report back to the design team about this 
previously unknown physical effect. In this way, the engineer is continuing to improve our digital 
understanding of the processes, but is not tied day-to-day in the minutiae of coding but is 
instead focused on the interpretation, validation, and communication that transforms models 
from math to value. 
 

3.4 Individualization of Models and Predictive Maintenance 

Once the modeling process is able to quickly and autonomously update from a baseline, we are 
no longer tied to simply modeling the idealized “average twin”. For example, while we can build a 
model of a jet engine, the processes can be set up to feed the SciML training specifically the data 
from a single engine, forcing the system to learn how flying over the Gobi desert has caused a 
specific device to diverge from the standard engine. This process would pinpoint the physical 
differences in the action of this specific component, allowing the engineers to identify failure 
modes for future design improvements, predict the degradation of performance to flag 
components to take out of the field for repair, and better ensure the safety of their devices.  
 

3.5 Managing a Cadre of SciML-Enhanced Models 

As machine learning becomes more integrated into engineering workflows, engineers will find 
themselves spending more time managing the understanding and cataloguing of the trained 
models. For example, when building a surrogate of a fluid dynamics model, every trained 
surrogate will have different properties. One surrogate may be trained in the range of pressures 
from 1 bar to 10 bar, while another is trained to be accurate in the range of 5 bar to 50 bar. 
Another set of surrogates might both be trained over the same space, but due to the effects of 
local optima, one surrogate might give better results on viscous fluids while the other might give 
better results on non-viscous fluids. Instead of running an expensive re-training process tools for 
every new scenario, the tooling can help catalogue the trained models and store reports of the 
validations in order to better help the modeler understand their AI archive and better pull the 
appropriate model out of the traceable and version controlled repository as needed, or 
understand when a new training may be necessary. 
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4. Dyad is built from the ground up for Software-Defined 
Machines 
 
Dyad1 is a new AI-enabled system modeling tool which is being designed to unlock the workflows 
of the future that are detailed and speculated above. By being a cloud-first, differentiable, and 
extendable system, Dyad is enabling a future where over-the-air updates of AI-integrated models 
are enhancing product performance. 
1 Dyad is the new name for the product previously known as JuliaSim. 

 

Dyad Underlying Technology Success Story 

 
Leader in the materials testing industry and 
developer of the Hydroplus Catapult System 

 
The Catapult Light redesign from 
Instron. Dyad’s underlying technology 
enabled a 500x speedup for this 
workflow [19], cutting simulation time 
from months to hours. This made it 
possible to explore full system changes 
to find the best performing solution 
with a single mode of operation. The 
optimizations resulted in a simpler 

lower cost configuration, “Catapult Light”, that provides performance and precision at a fraction 
of the cost by removing expensive low-pressure hydraulic arms and instead relying on improved 
control strategies. 
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 NASA Launch Services, the launch analysis 
team for the NASA Kennedy Space Center 

 
The public results of the RECURSAT 
project from NASA Launch services from 
engineer Jonnie Diegelman [14]. 
Showcased is the slide demonstrating 
the launch services simulation 
performance went from 15 minutes per 
run with Simulink to 58.2ms, or 15,000x 
faster. The previous Simulink-based 
workflow required that launch decisions 
were made at the end of the day to give 
engineers a full 7 hours to prepare 

analyses. After the change, analyses were performed in an interactive  

 

Legendary F1 team known for innovation, 
speed, and championship-winning excellence. 

 
Williams Racing employed Dyad to create a digital twin 
for a physical Speed over Ground (SoG) sensor [20]. 
The digital twin provides in-lap insights without the 
negative impact of extra weight and poor 
aerodynamics that come with running a race with the 
physical sensor. In the past, Williams Racing tackled 
this problem using classic machine learning techniques 
(Gaussian processes in PyTorch) depicted in Yellow. 
Dyad reimagined and improved the approach by 
implementing SciML techniques shown in Purple. The 
image of the car depicted the true orientation of the 
car, which demonstrates the Dyad model achieved 
approximately 50% less error in predictions over the 

original ML technique, evaluated 4x faster, and captured high-frequency features commonly 
found in vehicle control inputs.. Dyad deployed the model as an FMU for easy integration with 
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their real-time race analysis computer. 

 
Dyad is built upon an open source foundation and makes fundamental strides in model development, refinement, analysis and 
deployment, which are all the key pillars of software defined machines (SDM) 
 

4.1 Model Development 
 
4.1.1 Dyad Modeling Language 

The Dyad Lang is the modeling language at the heart of Dyad, providing a one-to-one textual 
representation of the model graphics and model analyses. This enables version control of the 
models themselves and code-based workflows. The textual representation of the model analyses 
means that every plot and result can be fully and exactly reproduced.  
 

4.1.2 Seamless Workflows Between GUI and Code 

Dyad’s model development workflow is designed to achieve maximum composeability between 
models while achieving maximal scalability. Dyad Lang is designed to work with the Julia JIT 
compiler stack, and supports bi-directional editing of both the graphics and the code. This textual 
formulation integrates with modern software engineering workflows via compatibility with Git 
and continuous integration and deployment (CI/CD). These features have been used at 
companies like Instron [19] to design and maintain digital twins of sophisticated hydraulic crash 
equipment.   
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4.1.3 Acausal Without Sacrificing Control Systems 

Dyad uses an acausal formulation pioneered by tools such as Modelica. Acausal modeling allows 
for the user to specify the high level physics of the system and allows an automated symbolic 
process to perform the derivation in order to arrive at the fundamental equations which 
determine the simulation. Previous work has demonstrated that such acausal modeling tools can 
be a major boost to productivity and model composability over causal system simulation tools 
such as Simulink, such as the improvements seen by Instron [19], and NASA launch services[14].  
However, the causal modeling tools have typically been the dominant tool in areas such as 
control design as these systems are naturally causal and the acausal tools have lacked many of 
the control-systems features required in this domain, including auto-coding to embedded 
targets. The Dyad language includes specific extensions to the traditional acausal languages, such 
as analysis points and linearization capabilities, along with having a well-supported causal 
component language subset which seamlessly allows for the control-systems applications to 
integrate into the workflow, bridging a gap that traditionally divided the domain. Along with 
synchronous programming features and state machines, Dyad is able to bridge the gap between 
regulated flight controls and detailed physical models, and generate binaries for a number of 
embedded targets. Additionally, Dyad can leverage capabilities from the Julia language, such as 
novel state estimation methods to aid control system design, as done at Mitsubishi Electric 
Research Lab [6].  

4.1.4 Synchronous Programming 

Dyad has the ability to build and represent discrete-time components which can interact with 
continuous-time components. This allows for complex controllers and state machines executed 
on multiple different clocks,   which are then interconnected with continuous-time plant models. 
The plant models used in model-based controllers can be automatically discretized to give fully 
discrete controllers which are compatible with the code generation and hardware deployment 
capabilities. 
 

4.1.5 Scalable Compilers and Julia Solver Integration to Bridge Scales 

Systems modeling tools have traditionally been focused on lower fidelity models due to the 
extensive issues involved with the compilation process. Equation-specific code can be manually 
written to be highly performant in specific domains, which is then the backbone of much of the 
3D spatial simulation software such as those for computational fluid dynamics (CFD). The 
compilation issues have thus limited the types of models and components which can be 
expressed within systems such as Simulink or the Modelica tools. These models must be 
simplified, generally omit spatial details, and aim for low or intermediate fidelity. 
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However, Dyad is a new generation of compilers that solves the issues of scaling to large-scale 
systems. Its infrastructure is not tied to a single solver but instead is able to make use of the 
entire Julia SciML stack with hundreds of different techniques [12], where some are optimized for 
small 8 ODE systems and others are GPU-parallel distributed and optimized for millions of 
equations spread over a super computer. Dyad’s compiler is able to target this large class of 
numerical infrastructure to re-specialize the approach based on different systems that are being 
modeled. 

 

This is all possible because Dyad’s infrastructure is structure-preserving, meaning that code from 
structures such as arrays or repeated loops can be kept. This removes the limitations of many 
previous compilers, like that of Dymola and other Modelica acausal compilers, which relied on 
passes like flattening and scalarization, which ultimately leads to the amount of code being 
generated growing linearly with the number of equations. With the structure-preserving tooling, 
Dyad is able to have constant code size for structured equations, which ultimately means that the 
compilation time is able to be better bounded on such models, bringing them within the domain 
of system modeling. The types of models which fit this domain are partial differential equation 
discretizations, such as CFD and finite element models, which means that with the new 
infrastructure of Dyad, this world can be brought together with the simpler system models. When 
combined with the specialized solvers, Dyad can present an alternative to the hand-tuned CFD 
codes and can generate simulators for these types of equations all within its composable 
modeling system.  
 

While in isolation at the start of the project we do not expect a pure Dyad CFD model to be 
competitive with a code like Ansys Fluent that is hand-optimized for exactly that model form, the 
ability to seamlessly integrate and compose models will mean that combinations, like a spatial 
battery model cooled by a chiller, with a CFD model of the resulting airflow, can be greatly 
improved over situations which attempt to co-simulate independent simulation codes. Over time, 
by focusing all modeling domains and equations through a single compiler stack, we also expect 
to achieve compounding benefits which could enable even a Dyad generated CFD model to 
compete with the hand-tuned versions because of the increased scale of utility provided by this 
design. 
 

4.1.6 AI: Generative AI for Model Generation and Translation 

The starting of modeling a new phenomenon can give a mental block as to where to start. 
Engineering would typically have to spend hours scouring the literature in order to find how 
others have approached the problem and start by recreating similar models before venturing 
into the unknown. By using generative AI mixed with AI-based translation of models from the 
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corpus of a multitude of modeling languages, Dyad can present natural starting points to the 
modeling process and overcome the activation energy of the starting writer's block.  

4.2 Model Refinement 

 
Schematic of SciML-based automated model refinement from data. This showcases how recent advances such as differentiable 
programming and universal differential equations can be synchronized with streaming data sources in order to produce models which 
learn previously unknown physics on the fly, iteratively improving themselves at the pace of computing. This transforms the modeling 
workflow from being  
 

4.2.1 Differentiable Programming Integration for Fast Calibration and Design Optimization 

The modeling and simulation tools of the Dyad stack are fully compatible with modern tooling for 
automatic differentiation (AD), enabling differentiable programming (dP) workflows. All forms of 
inverse problems, which includes the solving of problems like calibrating models to data and 
performing design optimizations, rely on a form of gradient-based optimization as the central 
calculation, and the calculation of the gradient is the core technical hurdle. Dyad’s AD integration 
allows for the automatic construction of adjoints which leads to orders of magnitude faster and 
more accurate gradients and thus optimizations. This compounds as the size of the models 
increases as the cost adjoint approach is linear with respect to the model and parameter sizes 
while the naive non-adjoint solutions are multiplicative, meaning that models which were once 
outside the realm of a deep data integration are now computationally possible. One of the key 
aspects to note about this enabling technology is that it can be very difficult to retrofit into legacy 
programs, meaning that this advantage (which enables all of the other model refinement 
features) is a technical moat for the Dyad design against the legacy competitors. 
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4.2.2 Version Control and Model Diffing for Iterative Refinement 

Because the model’s form is saved directly in a textual representation, Dyad integrates directly 
with Git-based workflows. Dyad’s project features are able to track the versioning of the models 
over time and show “diffs” which highlight what changed between versions. In addition, because 
there is a one-to-one mapping between GUI representations and the Dyad code, these diffs are 
representable in the GUI with coloring and other tricks able to highlight what has changed 
between model versions. These features are especially crucial in order to enable the AI-based 
model autocompletion in order to help modelers understand and track the exact changes 
proposed by the learning system. 
 

4.2.3 Specialized Loss Function Generation for More Robust Training 

Model refinement requires the solution of difficult nonlinear optimization problems. These are 
known to be prone to many phenomena such as local minima that make the process generally 
extremely difficult. There is an extensive literature on defining specific cost functions that can be 
used in order to avoid these issues, though they are not commonly used due to the complexity 
added to the process. Dyad includes a litany of these options in order to generate optimization 
problems, which mix with the differentiable programming functionality, in order to have a much 
higher chance of being well-defined and giving accurate results. This results in more robust 
model calibrations and other automatic refinements. 
 

4.2.4 Dataset and Model Management for Logging Training Results 

The integration of data into models and the resulting solution of inverse problems (neural 
network training, model calibration, etc.) can be a difficult computational task. Therefore it is 
necessary to track all of the experiments that were run, hyperparameters of the algorithms used 
(for example, results of different fitting choices, initial guesses, etc.) in order to get a full picture 
of the landscape. Dyad includes not only features for asynchronous execution of these long 
running jobs, i.e. the ability to spin up cloud runners to run these tasks in the backend, but also a 
complete logging system for investigating what types of analyses were previously performed and 
build comparisons between them. This lab tracker is essential to the AI functionality by allowing 
for comparative analyses for the AutoML features, making it so the automatic choices of neural 
network architectures can be easily tracked and understood by advanced users, while simplifying 
the process for beginning users who just want to pick out the best result out of a hat. 
 

4.2.5 Streaming Data Sources and Event Triggered Model Training 

Dyad is served through JuliaHub, which provides connectors to many popular datalakes and 
datastores. After connecting with the appropriate data source [5], Dyad models can be deployed 
as live apps which can be retrained either at regular time intervals, or when a new batch of data 
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enters the datastore, or externally via an API.  
 

4.2.6 AI: Model Autocomplete via Scientific Machine Learning 

As the model development progresses [13, 20, 21], engineers must make a myriad of modeling 
choices in order to balance the fidelity of the model against the requirements of simplification. 
However, when the simulations diverge from reality, it can be difficult to identify the aspects of 
the model which need to be re-evaluated.  The Dyad AI tooling for model autocomplete can use 
the real-world data to suggest to the modeler the precise model changes required to fix the 
predictions towards reality, and thus transform a tedious guess-and-check process of model 
refinement into a structured task of confirming and validating the predicted model extensions. 
 

4.2.7 AI: Neural Surrogates for Accelerated Model Analysis 

Sometimes, a high fidelity source truth can be helpful to integrate into a system model. For 
example, precise simulators for fluid or structural properties can serve as a digital source of 
truth. The Dyad AI tooling for automated surrogate generation allows for slimming the twin of 
the component [1, 6] in a way that retains the required fidelity to integrate with the rest of the 
system without introducing heavy computational burden. This reduced computational burden 
has been leveraged to design control systems in both commercial [10] and automotive HVAC 
systems, and even for solving large scale inverse problems when evaluating the erosion of public 
infrastructure such as bridges.  
 

4.3 Model Analysis 
 
4.3.1 Built-In Control-Systems Synthesis and Analyses 

Dyad includes a complete control-systems analysis suite which covers a wide range of traditional 
uses. This includes many features such as linear analyses (linearization, PID autotuning, etc.), 
robust control (  control), model-predictive control (MPC), and more. This functionality bridges 𝐻

∞
the gap between what was traditionally covered by several different product offerings. Generally, 
the acausal modeling tools (such as Modelica) are known to be the better systems for building 
complex plant models, while tools like Simulink have been known to have more complete 
control-systems capabilities. Dyad covers this gap by both being a scalable acausal system for 
efficient construction of complex models, while at the same time offering  a complete ecosystem 
for control-systems. 
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4.3.2 A General System For Adding and Sharing Custom Analyses 

One major differentiating factor of the Dyad system is its flexibility. This flexibility is not just 
within code and models but is also demonstrated in the analyses available in the GUI because 
Dyad includes a general system for hooking into the GUI for custom analyses. All of the internal 
analyses (controls, simulation, AI, etc.) are built to a documented API that exposes these model 
analyses to the user in the GUI. This API is designed to be open and accessible to users as well, 
meaning that the user base not only can share libraries of models but also libraries of analyses. 
This means that specialized control-systems analyses, optimal experimental design techniques, 
etc. can be implemented as GUI extensions by external parties and shipped as part of our model 
library system in order to allow further growth of the Dyad platform. But this also allows for 
company specific analyses, like the construction of specific plots or reports about models for 
regulatory deliverables, to be constructed and shared within a company and become a standard 
GUI button for a specific user group. This greatly grows the customizability of the GUI-based 
features and thus removes many of the limitations that are traditionally discussed about the 
legacy GUI-based system modeling tools. 
 

4.3.3 AI: Large Language Models for Natural Language Model Analytics 

Understanding what a simulation is saying is a language all to its own, where engineers must dig 
through mountains of documentation in order to force modeling systems to produce the 
visualizations which are informative. By integrating natural language queries into the modeling 
system [7], modelers can ask for visualizations in a format they already understand, cutting 
through the barriers to truly understand their digital twin. 
 

4.4 Model Deployment 
 
4.4.1 Cloud-Based Continuous Deployment 

Dyad runs natively in the cloud, and thus all models that are developed are naturally available in 
the cloud file system. This means that all models can be hooked into cloud-based continuous 
deployment systems for generating hardware-specific binaries and run automated testing where 
the results can be accessible at a team-wide level. This means that teams do not need to wait on 
the modeler to go to their computer to generate say an FMU binary for downstream usage, other 
modelers who have library access can sign into Dyad and click a few buttons to generate the 
binaries they need, and write scripts to automatically trigger build systems using the live version 
of the model as needed. 
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4.4.2 Web API Endpoints for Model Interactions and Predictions 

Dyad is served through JuliaHub, a cloud-based platform specialized for on-demand 
computation. Dyad models can be deployed as live “apps” which run in real-time and can be 
queried for model predictions via a REST API. This deployment strategy is leveraged to provide 
predictive and preventive maintenance services based on Dyad models. This is an active area of 
interest in commercial aerospace [1] and public utilities, where jet engines and pumps act as live 
assets whose failure or degradation leads to loss of services. 
 

4.4.3 Binary Deployments Model in the Loop, Software in the Loop, and Hardware in the Loop 
(MiL/SiL/HiL) 

Dyad’s compiler architectures are built on Julia and LLVM which is able to target binaries to 
embedded devices via the new juliac features [2]. This means that Dyad’s models and controllers 
can be used to generate embedded code for a number of microprocessors and microcontrollers 
(via a real-time environment). This allows Dyad to be central to embedded control-systems 
applications, along with supporting workflows for MiL/SiL/HiL testing.  
 
Additionally, this same workflow would enable algorithms written in Dyad to be compiled into a 
library which can then be deployed and linked against firmware running on commercial-grade 
equipment, such as at ASML [15]. 
 

4.4.4 Compliance with Regulatory Practices and Certification 

Dyad will also generate human-readable C-code with the mapped requirements, maintaining the 
digital thread from high-level requirements to C-code that is compiled onto the target, as 
specified by the DO-178C regulatory guidance for the commercial aerospace industry.  

4.4.5 AI: Retrieval Augmented Generation for Accelerated Regulatory Certification 

When considering the use of the model in regulated contexts, such as DO178C qualified 
workflows for commercial aerospace, the engineer needs to ensure that their model conforms to 
the required processes and correctly integrates the natural language requirements.  Dyad AI 
allows for highlighting potential areas where the model diverges from the assumed requirements 
description, helping to accelerate the process by which the model is refined to match the 
validation requirements.  

 

Together, these workflows enhance the modeler to empower them to be more productive while 
not compromising or sacrificing their expertise at ensuring the end system is robust for 
real-world usage. 
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4.5 Model Libraries 
 
4.5.1 Extensive Pre-Built Component Libraries 

Dyad comes with extensive pre-built component libraries which allows users to easily start 
constructing digital twins. This standard library includes many domains such as electrical, 
mechanical and hydraulic components, and includes discrete-time components to serve as 
central elements in controllers. Dyad also includes detailed libraries for specific subdomains on a 
case-by-case basis, including lithium ion batteries, aerial vehicles, and multiphase flow models of 
HVAC systems, to further accelerate the process of generating digital twins in high demand areas. 
Dyad also includes multibody libraries for the construction of rigid and flexible bodies, along with 
a visualization system, for modeling devices like industrial robots and vehicles. 
 

4.5.2 Community Model for Library Sharing and Licensing  
Unlike the traditional systems modeling systems whose business model is built from the 
top-down focusing on model libraries as the key source of revenue, and thus building a 
preference for vendor-built libraries into the system, Dyad is focused on being a platform by 
which all developers build and share models. Therefore, central to the design of Dyad is that 
every model a modeler builds is in a model library. Dyad includes a package management system 
for sharing and depending on other model libraries. The cloud-based file system then allows for 
teams to share models within a company, and for users to declare models as open to be shared 
by all users of Dyad. This makes Dyad a marketplace for models, with plans to allow for 
proprietary models to be released and marketed through the system for external model library 
vendors to supply other Dyad users directly through the package management system. 
 

5. Roadmap 

 
Dyad software roadmap. Shown is a simplified trajectory for Dyad’s development towards achieving software-defined machines. It 
includes both the aspects required to achieve embedded software capabilities while also achieving the aspects required for digital 
twins. 
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6. Conclusion 
The integration of AI into digital twins for industrial applications needs to be done carefully in 
order to ensure the safety and reliability of traditional engineering is brought into the new age. 
Dyad is specifically designed to incorporate AI and SciML into the right areas that allow for 
accelerating the process towards more accurate digital models of the physical world, while 
allowing for engineer-in-the-loop workflows. We envision that as the adoption of AI progresses, 
this will dramatically transform the modeling workflows, and have described a world where 
models are autonomously improving themselves in the cloud via streaming data and engineering 
teams work to validate the changing model and rapidly deploy the advances for 
over-the-air-updates and predictive maintenance. Every aspect of the engineers productivity can 
soar an order of magnitude above where it is today when all of these elements come together, 
leading to more efficient and performant devices, all without sacrificing an ounce of safety. 
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